2. How TDMA Works

TDMA relies upon the fact that the audio signal has been digitized; that is, divided into a number of milliseconds-long packets. It allocates a single frequency channel for a short time and then moves to another channel. The digital samples from a single transmitter occupy different time slots in several bands at the same time as shown in Figure 2.

Figure 2. TDMA

Figure 2

The access technique used in TDMA has three users sharing a 30–kHz carrier frequency. TDMA is also the access technique used in the European digital standard, GSM, and the Japanese digital standard, personal digital cellular (PDC). The reason for choosing TDMA for all these standards was that it enables some vital features for system operation in an advanced cellular or PCS environment. Today, TDMA is an available, well-proven technique in commercial operation in many systems.

To illustrate the process, consider the following situation. Figure 3 shows four different, simultaneous conversations occurring.

Figure 3. Four Conversations—Four Channels

Figure 3Figure 3

A single channel can carry all four conversations if each conversation is divided into relatively short fragments, is assigned a time slot, and is transmitted in synchronized timed bursts as in Figure 4. After the conversation in time-slot four is transmitted, the process is repeated.

Figure 4. Four Conversations—One Channel

Figure 4

Effectively, the IS–54 and IS–136 implementations of TDMA immediately tripled the capacity of cellular frequencies by dividing a 30–kHz channel into three time slots, enabling three different users to occupy it at the same time. Currently, systems are in place that allow six times capacity. In the future, with the utilization of hierarchical cells, intelligent antennas, and adaptive channel allocation, the capacity should approach 40 times analog capacity.

Cellular Access Technologies: FDMA
FDMA separates the spectrum into distinct voice channels by splitting it into uniform chunks of bandwidth. To better understand FDMA, think of radio stations: Each station sends its signal at a different frequency within the available band. FDMA is used mainly for analog transmission. While it is certainly capable of carrying digital information, FDMA is not considered to be an efficient method for digital transmission.


In FDMA, each phone uses a different frequency.

Cellular Access Technologies: TDMA
TDMA is the access method used by the Electronics Industry Alliance and the Telecommunications Industry Association for Interim Standard 54 (IS-54) and Interim Standard 136 (IS-136). Using TDMA, a narrow band that is 30 kHz wide and 6.7 milliseconds long is split time-wise into three time slots.

Narrow band means "channels" in the traditional sense. Each conversation gets the radio for one-third of the time. This is possible because voice data that has been converted to digital information is compressed so that it takes up significantly less transmission space. Therefore, TDMA has three times the capacity of an analog system using the same number of channels. TDMA systems operate in either the 800-MHz (IS-54) or 1900-MHz (IS-136) frequency bands.


TDMA splits a frequency into time slots.